一、温度对铅酸蓄电池寿命的影响
VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40℃,温度升高10度,寿命降低一倍,寿命终止的主要原因是:(一)硫酸电解液干涸;(二)热失控;(三)内部短路等。
(一)硫酸电解液干涸:
硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制因素之一。酸液干涸将造成电池
VRLA铅酸蓄电池受到上述(1)(2)(3)(4)四种因素的影响,其中(2)(3)(4)三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA铅酸蓄电池寿命的致命因素,VRLA蓄电池不适于在35℃以上高温条件下使用。
(二)热失控:
蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。
VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下易发生热失控,是由于安全阀排出的气体量太少www.cechina.cn,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。
(三)内部短路:
由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生成枝晶穿透隔膜等引起内部短路。深放电之后的蓄电池,其吸附式隔板易出现铅绒或弥散型沉淀,或形成枝晶,导致正负极板微短路。
由于VRLA铅酸蓄电池的负极冗余设计,充电的初、中期充电效率比正极板充电效率高,所以在正极板析氧之前,负极已生成足够的绒面铅,用于使氧进行再化合。在制作蓄电池过程中,以负极活性物质的量作为控制因素,可以减缓电池性能的恶化。
除此而外,目前在铅酸蓄电池中还普遍采用添加剂,用以改善蓄电池性能,如添加锌、镉、锂、钴、铜、镁、等金属盐或氧化物。这些添加剂均为强电解质,在放电过程中其离子向负极迁移。这些金属离子起化合配位作用,降低形成硫酸铅的概率,既是形成了硫酸铅,也比较松软,易于软化或还原。在电池的使用中,应尽量保持温度恒定,避免温度的大起大落,减少枝晶析出产生的机会。
综上所述,高温对蓄电池失水干涸、热失控、正极板栅腐蚀和变形等都起到加速作用,低温会引起负极钝化失效,温度波动会加速铅酸蓄电池内部短路等等。这些都将影响电池寿命。
二、温度对铅酸蓄电池容量的影响
(一)第一类早期容量损失,缩写为PCL-Ⅰ。
铅酸蓄电池容量突然损失的主要原因是阻挡层。由于Pb-Ca-Sn-Al合金再生缺陷和半导体效应控制工程网版权所有,正极活性物质与板栅间形成了单项导电的阻挡层,导电层组成成分较为复杂并具有半导体特性的晶体,对温度极为敏感,通过对腐蚀层的研究,改进了电池的合金和铅膏添加剂等半导体掺杂制造工艺控制工程网版权所有,其原理是半导体晶体对纯度极为敏感这一原理,一个ppm的掺杂能增加103的电导率,通过合理的掺杂工艺,这种失效模式基本上解决。
(二)第二类早期容量损失,缩写为PCL-Ⅱ
铅酸蓄电池容量缓慢损失的主要原因是不是通常所见的板栅腐蚀硫酸盐化或活性物质软化脱落等,而是由于多孔活性物质膨胀引起颗粒之间互相隔绝CONTROL ENGINEERING China版权所有,受温度影响很大,由PbO2→PbSO4 软化过程中膨胀收缩,引起的正极活性物松软和络合结构的不可逆损坏,逐渐软化脱落。造成正极板以较低的速度损失容量。
(三)第三类早期容量损失,缩写为PCL-Ⅲ
铅酸蓄电池无法充电的主要原因是由于负极