Today’s machine designers integrate engineering strategies inherent in human genetic designs. Latest theories on DNA-level adaptations in organisms align with how mechatronic designs in machinery increase productivity控制工程网版权所有, agility控制工程网版权所有, and the survival of manufacturing.
Symbiogenesis is a biological hypothesis that says genetic adaptations can result from a DNA-level merging of two interdependent organisms, rather than random mutations followed by survival of the fittest. For your well being, successful adaptationwww.cechina.cn, and survival, here are examples of how automated machine design strategies parallel symbiogenesis.
•Few machines are engineered from the ground up for good reason. After careful consideration of physical designs most appropriate for the machine’s application, engineers incorporate commercial-off-the-shelf (COTS) technologies — such as power supplies, programmable automation Controllers, and human-machine interfaces — to speed development. Internal relationships follow external environmental needs. Interdependent designs allow original equipment manufacturers (OEMs) to advance machine capabilities faster than migrating self-engineered systems. In human biology, more than 1,000 symbiotic organisms reside within us, performing many functions we haven’t taken time and energy to develop ourselves.
•Board-level integration can happen when controllers may not fit into the application — a box within a box can be unnecessary. Intelligence previously available in a small enclosure can migrate onto embedded, board-level products. Similarly, DNA, the building blocks of lifeCONTROL ENGINEERING China版权所有, once thought to reside only within a cell’s nucleuswww.cechina.cn, now is known to reside and function outside a cell’s “control cabinet.”
•Microprocessors have brok


在线会议
论坛
专题
工控直播
新闻中心
子站
技术
社区


福禄克六大“法宝”帮您搞定过程仪表校准难题
中控时间序列大模型TPT免费有奖体验
爱德克SE2L进阶版安全激光扫描仪有奖预约演示
剑维软件电子半导体行业白皮书有奖下载
魏德米勒麒麟系列产品赋能本土工业





















