一、行业概诉
目前,在我国电源结构中,火电装机容量占74%,发电量占80%;水电装机容量占25%,发电量占19%;核电仅占1%左右。火电厂中的各类辅机设备中,风机,水泵类设备占了绝大部分,蕴藏着巨大的节能潜力。
二、风机的选择和应用
风机是 火力发电厂重要的辅助设备之一,我国电站已经普遍采用了离心风机。以75(T/H)循环流化床炉为例,通常每台锅炉配备一台400KW引风机,一台315KW一次风机,一台250KW二次风机。由于锅炉在正常运行中的燃烧构成,热负载,电负荷以及季节等变化因数较大,因此,锅炉燃烧所需要的氧气在各不同的情况下也相应有较大的变化www.cechina.cn,然而,锅炉配置的风机是按锅炉最大负荷情况下所需最大风量来设计的,并考虑锅炉在事故状态下的风压,风量裕度,
即相应的保险系数。根据我国现行的火电设计规程:SDJ—79规定,燃煤锅炉的送,引风机的风量裕度分别为5%和5~10%,风压裕度分别是10%和10~15%,而实际设计中,风量和风压的裕度达20~30%是比较常见的。所以CONTROL ENGINEERING China版权所有,风机电机功率的配置一般都比较大。
三、风量控制
1、风门控制
锅炉风机的风量裕度通常都比较大,如果采用风门控制,风门挡风板的平均开度一般在50%左右,大量能源浪费在克服挡风板阻力上,风机效率下降。由图1和 2可见能源的损耗和风机效率的下降。同时还会带来管网压力不稳定,难以精确控制,以及电机启动电流过大造成的对电机的损耗和电网冲击等其他问题。
2、液力耦合器控制
液力耦合器是一种利用液体介质传递转速的机械设备控制工程网版权所有,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等CONTROL ENGINEERING China版权所有,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。
根据液力耦合器的上述特点,可以等效如图所示的模型
功率控制调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。因此,我们不能简单地认为液力偶合器调速是"丢转",而实际是丢功率。设原传动功率为PM1,输出功率为PM2,损耗功率则为液力偶合器是一种耗能型的机械调速装置,调速越深(转速越低)损耗越
大,特别是恒转矩负载,由于原传动输入功率不变,损耗功率将转速损失成比例增大。对于风机泵类负载,由于负载转矩按转速平方率变化,原传动输入功率则按转速的平方率降低CONTROL ENGINEERING China版权所有,损耗功率相对小一些,但输出功率是按转速的立方率减小,调速效率仍然很低。液力耦合器的调速效率曲线如图2所示,平均效率在50%左右。
3、变频调速
变频调速是靠调节风机电动机转速来改变风机风量。按流体机械定律,风机轴功率P与转速n之间有:
在风机风量有100%下降到50%时,变频调节与风门调节相比,风机的效率平均高出30%以上,除了大量节省能源外,采用变频控制还有以下优点:电机软启动,齐全的保护功能,调速特性优良,精度高,自动化程度高,便于监测和通讯,维护方便等。
四、变频调速方案选择
由于电机电压,变频器输入电压等级不同,电动机变频调速有如下四种方案:高-----高,高---低---高,高----低,低----低等4类。
合理的电压等级选用,VACON工程项目经验结合VACON变频器特性一般按如下原则选用经济合理的方案:
1、400KW以下电动机 380V变频器+低压电动机 低—低方案
2、400KW---800KW电动机 690V变频器+690V电动机 高---低方案
3、800KW---1500KW电动机 低压变频器+高压电动机 高—低--高方案
4、1500KW以上 高压变频器+高压电动机 高---高方案
五、投资成本与回报比较
以75吨流化循环炉为例,一般电厂6KV电压计算,引风机400KW,一次风机315KW,二次风机250KW各一台计算主要设备投资成本比较。另外,在通常设计中风门依然保留,以及电缆等成本不列入比较之中,以下成本分析旨在比较各方案的差异性。
1、风门+高压电动机控制 合计成本(RMB)75万
主要设备 成本(RMB)
三台高压电动机 33万
7台高压控制柜 42万
优点:投资成本低,系统简单
缺点:启动电流大,不节能,控制精度低,难维护,自动化程度不高。
2、液力耦合器+高压电动机 合计成本(RMB)114万