从CPU的指令执行频率上看,算术逻辑单元、程序计数器、协处理器是CPU中使用频率最多的模块,而加法器正是这些模块的核心部件,几乎所有的关键路径都与之有关,因而设计一种通用于这些模块的加法器是整个CPU设计中关键的一步。为此,笔者根据32位CPU的400MHz主频的要求,结合CPU流水线结构,借鉴各种算法成熟的加法器,提出一种电路设计简单、速度快、功耗低、版图面积小的32位改进定点加法器的设计方案。
1 设计思想
对于高性能CPU中使用的加法器,速度显然是第一位的,所以考虑采用并行计算的方法,并且在电路的设计上采用少量的器件来获得速度上的巨大提升。从面积有度出发,链式进位加法器(Ripple-Carry Adder)的器件最少,面积最小,版图工作量也最小,可是由于加法器的高位进位要等待低位的运算结束后才能得到,所以没有办法在速度上达到要求。鉴于此,采用类似于链式加法器的结构。 省先从进位选择加法器(Carry-Select Adder)得到提示,将32位加法器一分为二,分为低16位加法器和高16位加法器,再将低16位加法器的进位输出
另外,从超前进位加法器(Carry-Look-Ahead Adder)获得提示,在超前进位加法器中引入中间变量G和P用于加速进位链的速度。而G和P在逻辑表达式上与前一级的进位无关www.cechina.cn,只与每一级的操作数输入有关,而且它们又是构成本级进位的必要部分。在微处理器的数据通道上,数据传输是并行进行的,即两个32位操作数几乎同一时间到达时加法器。所以,G和P不论是加法器的最低位还是加法器的最高位,几乎都可以在相同的时间内得到,因而进位链上就可以借鉴这个特点加速进位的传递。以一个四位加法器为例,有如下的逻辑推导过程:
C4=C3P4+G4=(C2P3+G3)·P4=G4=C2P3P4+G3P4+G4=(C1P2+G2) ·P3·P4+G3P4+G4=C1P2P3P4+G2P3P4+G3P4=(C0P1+G1) ·(P2P3P4)+(G2P3P4+G3P4+G4)=C0·(P1P2P3P4)+(G1P2P3P4+G2P3P4+G3P4+G4)
令上式中P1P2P3P4为Pgroup,G1P2P3P4+G2P3P4+G3P4+G4为Ggroup,如果将32位加法器划分为若干的小块,则每一个小块都可以有自己相对应的Ggroup和Pgroup。由此可知对于整个加法器的时延来说,关键路径的时延总值可以由三部分组成:①产生Ggroup和Pgroup的时延;②进位传递逻辑上的器件时延;③加法器进位链上的导线时延。对于这三类时延,时延①与时延(②+③)存在重叠的部分www.cechina.cn,于是使这两类时延合理衔接,可以使得进位链上的逻辑级数最小,从而使得电路上的传输时延达到最小上。
2 具体实现
2.1 4位加法器模块的实现
在具体的电路设计中,先将32位数据通道划分成了高低两部分,然后以4位为单位划分成更小的模块。这些模块在结构上是基本一致的CONTROL ENGINEERING China版权所有,但在功能上要完成本模块四组操作数(A[k:k+3]和B[k:k+3])与进位Ck的加法运算,并要产生模块的中间变量Ggroup和Pgroup的运算。
对于单一的每一位,定义它的G和P分别为:Gi=AiBi,Pi=Ai+Bi,加法器的和SUMi=Ai+Bi+Ci-1=Pi+Ci-1,考虑到器件的实际驱动能力www.cechina.cn,结合加法器的另一个功能--减法运算,设计出如图2所示的带减法功能的一位加法器电路。
设计的4位加法器进位链如图3所示,除C0外,输入(Pi和Gi)都是由图2的一位加法器产生的,所有4位进位链Ci都按超前进位加法器连接方式直接接入相应位置。由此可以看出,进位信号到达各位的逻辑级数是相当的,只要在进位信号到达之间使所有的中间信号Gi和Pi都能及时产生,就能及时得到每一位的和(SUM)。
图4是产生4位加法器块进位及块的Ggroup和Pgroup信号的电路。借鉴于超前进位加法器的传递逻辑电路,可知并不是所有的4位加法器都需要向它的下一个模块传送进位信号控制工程网版权所有,而只要产生传递进位所需的Ggroup和Pgroup信号即可。而有些位置,由于进位链设计的实际需要,要需要利用4位加法器模块产生的进位信号,而不必采用传递逻辑产生的进位信号,而不必采用传递逻辑产生的进位信号,具体的情况还是有区别的。为了充