摘要:本文采用不同的窗口层生长工艺生长了LED外延片,并详细研究了不同生长工艺对LED可靠性的影响。
关键词:MOCVD、AlGaInP、高亮度LED、LED可靠性
1引言
随着外延技术的发展,特别是金属有机气相外延技术(MOCVD)的日臻完善和技术应用,以及半导体异质结材料和量子阱结构在发光器件中的应用,高亮度LED外延材料AlGaInP在九十年代有了突破性的进展CONTROL ENGINEERING China版权所有,日本东芝公司以及美国HP公司先后研制成坎德拉级AlGaInP高亮度LED【1】,我国在1998年研制成功第一只坎德拉级高亮度橙色LED【2】【3】,河北汇能公司于1999年研制出坎德拉级高亮度红、橙、黄LED控制工程网版权所有,并首先在国内开始产业化生产【4】,2004年OSRAM的发光二极管的效率达到108lm/W(614nm) 【5】。
尽管LED的寿命很长,但是还没有达到专家预测的1
2试验设备与测试仪器
外延材料的生长是在AIXTRON-2600G3设备上进行的CONTROL ENGINEERING China版权所有,典型的LED生长结构如表1。衬底采用3英寸N+-GaAs衬底,晶向(100)偏(111)15°,生长材料采用常规的LED器件工艺,制成230μm×230μm的管芯,最后用环氧树脂封装成Φ5mm的LED,采用自己研制的老化台老化试验。功率测试计采用杭州远方公司生产的LED测试仪器。
表1. 典型的AlGaInP-LED生长结构
3寿命试验结果与分析
3.1外延片测试
我们进行了三批外延材料的生长分析,三批外延材料采用相同的结构,为了进行外延材料的生长工艺与LED可靠性的关系研究,三批外延材料采用了不同的窗口层生长工艺,外延片编号分别为ACE-1、ACE-2和ACE-3,三批外延材料的GaP厚度一样,ACE-1采用低温生长GaP籽晶层,正常生长速率生长GaP;ACE-2同ACE-1的工艺条件基本相同控制工程网版权所有,只是GaP生长速率加倍;ACE-3则采用优化的GaP生长工艺,该外延片的室温PL光谱为633.5nm,波长的平均半高宽为13.3 nm
3.2寿命试验结果
我们的试验共选取了三批外延工艺不同的材料,分别封装成Φ5mm的LED灯,进行老化试验,老化条件为室温下、直流50mA,分别编号为ACE-1、ACE-2和ACE-3三组,样管ACE-1中的功率在短暂的功率上升后,功率开始缓慢下降;而ACE-2寿命曲线比较奇特,分为三个阶段,开始阶段增长较快,然后功率急速下降,最后功率开始上升,在我们老化的一千多小时内,功率还在增加,这种奇特的功率老化曲线,还未见文献报道;ACE-3则是比较典型发光二极管测试曲线。
3.3结果分析
发光二极管的退化主要是缓慢退化,包括管芯退化以及环氧树脂的退化,我们的讨论不考虑封装管芯的环氧树脂的退化。管芯的退化主要是有源区内缺陷和位错的繁殖增生,以及有源区外面缺陷和位错的移动。我们的管芯由于有源区的工艺相同,因此影响寿命曲线的主要是有源区外的缺陷和位错的移动。
在老化初期,三个样品管芯的功率均有不同程度的增加,主要是由于退火效应造成的发光区非辐射复合中心减少。ACE-1的窗口层采用低温生长籽晶层工艺,由于GaP和AlInP的晶格失配CONTROL ENGINEERING China版权所有,因此在籽晶层会产生大量缺陷,随着老化时间的增加,缺陷和位错的移动,使得LED寿命逐渐衰减。而ACE-2的窗口层由于提高了生长速率