0 引 言
电动机内部故障的诊断与检测是电动机保护 的主要研究方向。近年来CONTROL ENGINEERING China版权所有,其研究主要集中在两方 面:一方面是追寻保护理论上的突破,逐步由定性 说明到定量分析;另一方面是在实现手段上的发 展,逐步由常规保护方式向基于先进信号处理方法 和微机保护技术的现代保护方式进化。本文基于 对电动机保护原理的分析和研究CONTROL ENGINEERING China版权所有,利用FPGA系统 设计实现了最小二乘法数字保护算法。以FPGA 芯片为核心所设计的电动机微机保护装置控制工程网版权所有,不仅克 服了传统的继电器式电动机装置的缺点,而且比普 通微机保护装置响应速度快,截断误差小。
1 电动机继电保护的原理
电动机的内部故障可以分为对称故障和不对 称故障两种。对称故障包括过载、堵转、短路等; 不对称故障包括断相、逆相、相间短路、接地故障、 三相不平衡等。根据对称分量原理,当电动机发 生对称故障时,会出现明显的过流[ 1 ] 。因此,可 以利用过电流检测来实现对称故障的诊断与保 护。当电动机发生不对称故障时,其定子电流可 以分解为正序、负序和零序分量,其中负序和零序 电流在电动机正常运行时没有或很小控制工程网版权所有,一旦出现 必然表示出现了故障。因此利用电流中的负序和 零序分量来鉴别各类不对称故障具有很高的灵敏度和可靠性。 电动机的微机保护主要通过测量电量(电 流、电压及开关状态等)来监测电动机的运行状 态,根据以上分析,电动机发生对称故障的主要特 征是出现电流幅值增大,而发生不对称故障时的 主要特征是出现负序和零序电流分量[ 2 ] 。根据 这一结论,可将电动机的保护分解成过流保护、负 序电流保护和零序电流保护三个部分。由此可基 本覆盖电动机的所有常见故障类型,并可以针对 电动机的以上三种主要保护提出电动机的综合保 护方案。
2 基于FPGA的微机保护系统硬件
根据电动机保护基本工作原理,首先必须测 出所保护元件上的电气参数,再与给定的正常标 准值进行比较,以判断元件是否发生故障或是否 运行在不正常状态,从而确定保护装置是否应该 动作跳闸或发信号。因此,完整的保护装置应包 括三大部分:测量比较部分、逻辑判断部分、执行 部分。其各部分的逻辑关系可用图1表示。
电动机微机保护装置的硬件系统采用模块化 结构,如图2所示。
FPGA芯片代替传统单片机(MCU)成为整个 装置的核心,完成模拟信号的调理滤波、采样、模 拟/数字转换、频率和相位测量、开关量信号输入/ 输出、通信、系统计时、数据计算、逻辑判断等功能。 键盘显示模块负责人机会话。通过发光二极 管可以实时显示被保护电动机的电流、电压、频率 和断路器的状态等外部信号及装置的工作状态、 动作类型等详细信息。通过键盘可以修改整定 值、查询动作记录,并可以就地操作断路器。 摸拟量采集模块由电压形成回路、采样保持 ( S/H) 电路、模拟低通滤波器和A /D 转换器 MAX197组成www.cechina.cn,其作用是将来自现场的交流量转 换为处理器模块可以处理的数字量信号。
出口模块主要负责装置内外的电气隔离,一 方面将来自处理器模块的动作、报警等信号隔离 后,送到装置外部;另一方面将来自装置外部的断 路器状态等信号进行隔离后,送到处理器模块。 根据功能, FPGA芯片内部被划分为两部分: 算法实现模块和软核CPU (Nios)模块。前者由 VHDL模块化编写算法的实现过程,由于采用并 行结构,可以实现多路信号同时滤波;后者为软件 编写人机界面、通信协议等构建平台,并且同时根 据算法实现模块的结果,执行保护动作。在只考 虑一路信号的情况下,本系统由以下各部分组成。 (1) 码制转换器:将AD采