一、前 言
近年来,模拟生物神经系统的神经网络,由于具有学习、自组织等新的信息处理能力,对于模式识别问题有很大的优越性,得到了迅速的发展。在冶金行业中,轧钢加热炉是轧钢生产过程中的重要设备之一,在实际操作过程中,操作人员依靠传感器的信息,判断炉况,进行操作。有些判断难以用简单的“IF A THEN B”这样的规则表达,而是根据操作人员的经验,将炉况分成几种模式,用神经网络来识别目前炉况属于那种模式www.cechina.cn,对其进行操作进行指导,或作为专家系统的补充,有较大的作用。
二、神经网络模型
神经网络是模拟生物的神经系统(特别是脑)功能的网络。人脑约由150亿个神经细胞组成,每个细胞同数千、数万个神经细胞相联系,形成网络。这样,神经细胞模型可以看作是n输入单输出的信息处理单元。某个输入Xi对神经细胞的影响以影响度表示,称为细胞的结合权重或效率Wi,这个细包模型如图1所示。
图1 细胞模型
细胞的输入有强有弱控制工程网版权所有,当其总合超过某一阀值,则细胞进入兴奋状态,产生输出;当其总合低于阈值时,细胞进入抑制状态,没有输出。
神经细胞之间可以有不同的连接方式,目前已经提出了许多神经网络模型,
神经网络的两种常用的模型。
2.1 多层感知器模型
图2 层次感知器神经网络
图2是一个三层感知器神经网络,有N个输人,M个输出,一个中间层。从输入信
号x,由内部单元经非线性变换,最终得到输出y。
对于输入x,期望的输出设为yd=yd(x),而实际输出为y=y(x),一般二者不一致;
输入—输出的函数与网络内部细胞的结合权重有关。由期望输出与实际输出的误差信号
e = yd(x)-y(x)
调整网络内部的结合权,使误差减小,以改善神经网络的工作,这称为学习神经网络。
在这种场合,因为给定期望的输出,故称为有教导的学习。
目前逆向误差传播学习法得到广泛应用,这一学习法以输出的二乘误差为评价函数,以最速下降法反向修正各层结合权和阀值。
这样,开始时在网络上随机设置小的权重和内部阀值,重复输入训练数据进行学习,每一试验,根据指标的误差信息对权值和阀值进行调整,直到指标达到可以接受的值。这一迭代算法步骤如下:
(1) 权值和阀值的初始值设定。
(2) 给连续输入向量x={x1,x2,…,xn}和期望输出 yd={yd1,yd2, …,ydM}
(3) 计算实际输出。
(4) 调整权重。
(5) 返回(2),重复进行。
对于阀值的调整也可以相似进行。
2.2自组织模型
自组织模型与上述不同的是不规定期望的输出CONTROL ENGINEERING China版权所有,通过自学习抽取对象数据的特征www.cechina.cn,进行基本模式的分类,这称为无教导的学习。
图3所示M个输出节点的阵列控制工程网版权所有,用来抽取输入特征,输出节点用局部连接相连。每一输入xi通过可变的权重wij与每一输出节点yj相连。反复送入分类数据作为输入向量x
CONTROL ENGINEERING China版权所有
,权重将进行组织,以输出最大的节点为核心,使核的节点和其邻近的节点响应相同的输入信号。通过这种学习CONTROL ENGINEERING China版权所有,使各节点的权重代表相应的输入模式。与逆向误差传播多层神经网络不同的是:这里是由学习自动抽取数据的特征www.cechina.cn
,分成典型的模式,而不用给定期望的模式:而分成的典型模式用权重记忆,找出权重就掌握了数据的特征。图3为自组织网络图。
图3 自组织网络图
三 、多层感知器神经网络在轧钢加热炉模式识别中的应用
采用多层感知器神经网络作为轧钢加热炉炉温控制和热风量控制专家系统的一部分。 以轧钢加热炉炉温预测神经网络为例,采用如图4所示的三层网络。以钢坯加热状况,煤气成分,炉中部热平衡计算求得的计算值指数、 炉体热损失量过程数据作为输入层的输入。
图4 炉温预测神经网络
中间层通过调整后选用几个节点控制工程网版权所有,输出层有三个节点www.cechina.cn,即“炉温变高”,“炉温不变”和“炉温变低”。输入数据经归一化后,为-1~+1之间的值,输出为0~1范围的预测值。学习采用逆向误差传播学习算法,进行权重调整以加快收敛。
对于采用多层神经网络对炉内煤气流分布进行预测,作为专家系统的一部分。模式识别的对象是炉膛上部检测器、炉膛中部检测器和炉壁(纵向)温度计,检测器是插入炉内的煤气温度计或煤气采样管。对炉膛上部检测、炉膛中部检测、炉壁;(纵向)温度的模式识别都采用三层神经网络。预先根据过去的操作经验对轧钢加热炉炉况进行分类,直观判断所检测的数据模式接近那一类,这样,得到几种模式作为教导数据,故神经网络的输出层也采用几个节点,每个节点的输出代表一种模式。
输入层的节点数和中间层的节点数