自20世纪80年代以来,随着现代电机技术、现代电力电子技术、微电子技术、控制技术及计算机技术等支撑技术的快速发展,交流伺服控制技术的发展得以极大的迈进,使得先前困扰着交流伺服系统的电机控制复杂、调速性能差等问题取得了突破性的进展,交流伺服系统的性能日渐提高控制工程网版权所有,价格趋于合理控制工程网版权所有,使得交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。
伺服控制技术是决定交流伺服系统性能好坏的关键技术之一控制工程网版权所有,是国外交流伺服技术封锁的主要部分。随着国内交流伺服用电机等硬件技术逐步成熟,以软形式存在于控制芯片中的伺服控制技术成为制约我国高性能交流伺服技术及产品发展的瓶颈。研究具有自主知识产权的高性能交流伺服控制技术,尤其是最具应用前景的永磁同步电动机伺服控制技术,是非常必要的。
1 交流永磁伺服系统的基本结构
 
图1 数字化交流伺服系统基本结构框图
·稀土永磁同步电动机
稀土永磁同步电动机是使用最多的伺服电机品种。这种电机的特点是结构简单、运行可靠、易维护或免维护;体积小,质量轻;损耗少,效率高,现今的永磁同步电动机定子多采用三相正弦交流电驱动,转子一般由永磁体磁化为3-4对磁极,产生正弦磁动势。高性能的永磁同步电动机由电压源型逆变器驱动,采用高分辨率的绝对式位置反馈装置。高性能的交流伺服系统要求永磁同步电动机尽量具有线性的数学模型。这就需要通过对电机转子磁场的优化设计,使转子产生正弦磁动势,并改进定子、转子结构,消除齿槽力矩,减小电磁转矩波动。这样通过对电机本体的设计来提高其控制特性。
国外各大伺服驱动厂商和电机制造商均有性能优良的永磁同步伺服电动机产品控制工程网版权所有,功率一般在50W-20kW之间。国内由于资金和技术的限制,研究和产品多集中在低价位、性能较差的直流无刷电动机上。一些院校和研究所的永磁同步电动机多为特殊设计,应用于航天、国防等特殊场合的特种电动机。北京四通、上海开通、西安微电机研究所和华中数控等少数单位研制出部分产品,但都未形成规模控制工程网版权所有,不具有与国外产品竞争的能力。
·功率驱动单元
功率驱动单元采用三相全桥不控整流,三相正弦PWM电压型逆变器变频的AC-DC-AC结构。为避免上电时出现过大的瞬时电流以及电机制动时产生很高的泵升电压,设有软启动电路和能耗泄放电路。逆变部分采用集驱动电路,保护电路和功率开关于一体的智能功率模块(IPM),开关频率可达20kHz。
·控制单元
控制单元是整个交流伺服系统的核心, 实现系统位置控制、速度控制、转矩和电流控制器。 数字信号处理器(DSP)被广泛应用于交流伺服系统, 各大公司推出的面向电机控制的专用DSP芯片, 除具有快速的数据处理能力外,还集成了丰富的用于电机控制的专用集成电路,如A/D转换器、PWM发生器、定时计数器电路、异步通讯电路、CAN总线收发器以及高速的可编程静态RAM和大容量的程序存储器等。
·位置反馈单元
位置传感器一般采用高分辨率的旋转变压器、光电编码器、磁编码器等元件。旋转变压器输出两相正交波形,能输出转子的绝对位置,但其解码电路复杂,价格昂贵。磁编码器依靠磁极变化检测位置,目前正处于研究阶段,其分辨率较低。
图2 光电编码器
光电编码器分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编