可变速电机驱动可以提高机器设备的能源效率,但为了降低成本、提高市场响应速度和提高效率,还要在几个方面对可变速驱动设计进行改进。其中包括对IGBT很关键的线性电流反馈和过流保护特性,这两个功能传统上都是通过采用体积大、昂贵和难以组装的元器件来实现的。
最新的HVIC(高压集成电路)技术使得大多数必需的反馈和保护器件可以制作在一个基片上,这样就可以在范围更大的市场和应用里,来实现成本低廉、结构紧凑的可变速驱动。
电机电流感测方法
变换器级和电机相电流的感测对电流模式控制是至关重要的,这种模式要求很高的精确度和线性度。这种感测对过流保护同样重要,因为过流保护要求响应速度要快。要同时满足上述要求,加上独特的电流信号取样位置,就要求复杂的电路设计和信号处理。
实际上,电流信号可以通过与下列结点相连接而被取样:正或负DC总线、单IGBT相位脚、或电机相位超前控制工程网版权所有,如图1所示。不管在哪个DC总线上取样的电流信号,都是所有IGBT相位脚电流的矢量和。
在单个IGBT相位脚上对电流的取样看起来更容易操作了,但实际上却不能降低对载波频率取样处理的需求。到目前为止,最简单的、容易获得的电流信号来自于电机的相位超前,信号内容仅是基本的变频电机电流。需要考虑的一个重要因素是,小的差分信号在几毫伏范围内CONTROL ENGINEERING China版权所有,在600~1200V电压间变动。另外,由于IGBT变换器相的作用,普通模式电压以最高10V/ns的dV/dt速率在-DC到+DC间变动。
HVIC:位准移动(Level shifting)
HVIC技术使得位准移动成为可能,即感测一个漂移在大的普通模式电压上的小差分电压,甚至在快速瞬变的时候。因此www.cechina.cn,快速而准确的电流感测在电机的相位超前就可实现,从而可以减少硬件设计和信号处理的工作。具体的实现方法是将一个低侧接地CMOS电路和一个高侧浮动CMOS制作到一起,通过N或P沟道LDMOS区域相隔离。LDMOS的作用是位准移动控制工程网版权所有,目的是在低侧和高侧电路之间跨过高压栅来传递控制信号。位准移动电路不受高达50V/ns的快速瞬变的影响,同样也不受来自于IGBT变换器典型的10V/ns噪声的干扰。
HVIC的线性相电流感测
电机电流是通过使用一个外部分流晶体管来感测的,HVIC可将小的差分电压(±250mV)通过一个精密电路转换为时间间隔,这个精密电路的纹波去除功能有助于显示小的群延迟。时间间隔是快速瞬变的,会被带到输出端。这样就可以获得与测量电流相对应的模拟输出电压www.cechina.cn,以便与外部参考电压相比较,最大采样率为40kSPS。对于频率高达20kHz的非对称PWM调制来讲,这个采样速率富富有余。20kHz时的最大延迟小于7.5s,对于被用来IGBT保护的电流感测信号来说也够快了。图2是电流感测电路。
图2 HVIC应用中线性相电流感测电路
IGBT保护
IGBT过流情况基本来说分三种模式:线间短路、故障接地和开关击穿。在考虑过流保护方案时,必须对两个重要因素作出评估:第一个是提供的过流保护的模式以及如何关断,另外一个就是控制架构。控制架构很大程度上影响着过流保护的方式和实施。
IGBT保护一般在硬件电路里实现,根据要保护的过流条件的模式,具体电路和过流感测器件的类型会有所不同。其原因在于,在每个过流模式中的路径和电流流动是不一样的。图3a至3c显示了每个过流条件模式的典型电流流动,在主要功率电路里的电流流动及其路径取决于过流的模式。在开关击穿和线间短路条件下的短路电流总是流向直流总线上的电容器。然而,故障接地电流通常从交流线输入,通过正直流总线和高侧IGBT,流向故障发生的接地点。没有电流流过总线电容器。
图3 IGBT过流保护的三种方式
保护电路也取决于控制架构。对于开关击穿和线间短路过流保护来说,常规的、非HVIC解决方案探测过流的方式是,跨过分路晶体管插入一个霍尔传感器或线性光隔器件,与负直流总线相连。如果也需要故障接地保护的话,在交流线输入端或正直流总线必须放上另外一个霍尔效应漏电传感器。通过使用快速比较器可以实现保护电路。
如果霍尔传感器位于电机的相输出,因为在线间短路条件下电流流动的正