国内制造业的设备维修管理服务需求不断攀升。迫切需要研发面向大型装备的维修、维护和大修MRO(Maintenance, Repair and Overhaul)协作平台,为装备制造企业、装备用户企业和装备服务企业提供全面的数字化解决方案和信息化集成技术,推动制造服务业跨越式发展。目前,虽然对钢铁连铸设备的MRO协作平台的研究已有一定的成果,但还有一些不足:
(1)由于缺少有效的信息通信机制,不能自动、实时、准确、详细地获取连铸设备的生产现场环境、生产加工等信息,造成钢铁企业的连铸生产线与企业信息化系统之间无法实现紧密的信息集成。
(2)由于连铸生产线设备构造复杂,生产环境非常恶劣,设备之间的数据传输频繁,从而使得难以对全部的设备进行监控。
本文正是在这种背景下,提出M2M(Machine to Machine)技术在此协作平台中应用。M2M即机器与机器之间的通信,通过一些通信模块实现机器与机器之间数据交换。其具有以下优点:无需人工干预,实现数据自动上传,提高了信息处理效率;数据集中处理与保存www.cechina.cn,实现信息集中管理;数据保存时间长,存储安全;可实现实时监控和控制CONTROL ENGINEERING China版权所有,时效性高;无线方式传输数据,监控终端运行状态,保障业务稳定运行。利用M2M的关键技术无线传感器网络ZigBee技术和CDMA远程数据信息传输技术,实现从传感器到测控中心的远程无线传输方案,解决了钢铁连铸设备的MRO协作平台面临的问题。
1 钢铁连铸设备数据采集总体结构设计
钢铁连铸设备数据采集总体结构如图1所示。主要包括连铸设备(A,…,N)采集节点模块、传感器及钢铁连铸设备参数的局域网、CDMA无线通信网络、钢铁连铸设备远程服务器、数据库以及远程用户终端等几个部分。
图1 钢铁连铸设备数据采集系统框图
其中,连铸设备采集节点模块组成无线传感器网络,采用星型拓扑结构设计,基于TI公司的ZigBee技术方案,即CC2430芯片结合无线ZigBee协议线实现的ZigBee MESH网,如图1所示。ZigBee网络中包含传感器节点、协调器和汇聚节点3种设备。协调器通过433 MHz射频技术组成一个星型网络,ZigBee网络中的传感器节点可以将采集到的数据通过ZigBee网络传输到各自的协调器,协调器将数据汇总后,再通过433 MHz射频技术传送到星型网汇集器,即整个系统的汇聚节点,然后通过CDMA技术CONTROL ENGINEERING China版权所有,将采集数据通过无线CDMA网络和Internet对接,最终把数据传送到远程服务器。该系统的关键电路包括ZigBee无线传输模块接口和CDMA无线通信模块接口两部分。
2 钢铁连铸设备数据采集硬件设计
钢铁连铸设备数据采集系统的核心是连铸设备传感器节点,传感器节点的结构包括传感器模块、微处理器模块(由嵌入式系统构成,包括CPU、存储器等)、无线通信模块和电源模块四个单元,如图2所示。其中,传感器模块完成监测区域内信息的采集和信号转换;处理器模块负载控制整个传感器节点的操作、存储和处理本身采集的数据;无线通信模块负责与其他传感器节点进行无线通信CONTROL ENGINEERING China版权所有,交换控制信息和收发采集数据;电源管理模块为其他功能模块单元提供正常工作所必需的能源。
图2 数据采集节点结构图
2.1 传感器模块
连铸生产线的设备状态信号有振动位移、振动加速度、转速、温度、电流等信号。本文选用德国HLP公司TS118-3红外温度传感器控制工程网版权所有,该传感器采用热电堆红外非接触测温技术,红外测温技术能快速、可靠地测量热的、危险的或难以接触的物体,且不会污染或损坏被测物。非接触红外测温技术可方便地测量物体的表面温度,不需要机械地接触被测物体。测温范围从-40℃~3000℃,加上光路后测量距离从0~10m均可准确测量。本文设计的温度传感器模块电路图如图3所示。
图3 温度传感器模块电路图