模块制造工艺
因为每一个单独的太阳能电池功率都很小,因此模块内部都以电池串的形式联接在一起。每个电池的上面(负极)与下一个电池的背面(正极)焊接,虽然可以手工操作,但通常还是采用薄片串(Tapper-Sringers)的自动化工艺加工。
每一串的末端都伸出最后一个电池的边缘以供电气联接。联接之后,脆弱的太阳能电池就需要加上适当的保护层以承受外部的机械应力,气候条件的变化和湿度等。因此人们首
封装工艺在玻璃和太阳能电池之间提供了光学连接和保护。所选的材料应能粘贴上面和背面的薄层,而且其组分不会随时间的推移损害PV电池,也不会因紫外线和湿度而改变组分。因为发生任何半透明情况都会极大地降低模块的性能。粘贴必须保证牢靠,不会发生脱层。用于晶体硅电池的封装材料主要是EVA。PV电池串的EVA封装在真空室(真空层压器)里进行。一般包括三道工序:第一道工序是将所有的组件叠放在一起, 放入真空室(不能有任何气泡和错位),第二道工序是加热加压,(仍在真空状态下)此时箔开始融化,并完全包裹住电池,将所有的组件“沾湿”。第三道工序是再加热,使EVA相互交链,(crosslink) 这一道工序改变了聚合物的结构,使其在太阳光的充分照射下也不会再软化。软化会使太阳能电池组件移位。但有些制造商采用PVB(聚乙烯醇缩丁醛)箔作为封装材料,应用在玻璃-玻璃(前面-背面)的模块封装中。
PVB是一种标准的层压玻璃用的安全材料。过去曾经用在光伏产业中,但因为其在水蒸气中会变得模糊而不受欢迎。但近来的研究表明PVB在玻璃——玻璃(前面——背面)的模块的制造中有其优势,而最新的PVB箔在保持透明度方面有与EVA同样的性能。PVB的另一个优点是用于玻璃面的屋顶和建筑一体化的幕墙时能满足建筑规范的要求。而EVA在粘接玻璃时因粘贴力太弱而不能满足上部冲击力的标准要求。PVB和其它热塑性材料在组件用完报废或损坏时可以回收用作再次封装的材料。
偶尔也有用Teflon(特氟隆)作为封装材料,主要用于小量特殊的模块封装。在用为填充材料时模块尺寸可达2.5×3.8m。
电压波动
太阳能电池模块很少能在正常的操作条件下工作,因为阳光辐射和温度是不断变化的。额定的太阳能电池模块输出功率是按标准测试条件(STC)测得的,但这些条件很少能符合实际使用条件。因此其操作性能可能是额定功率的85%~90%。但有些模块功率也会高于额定值。
阳光辐射会在最大程度上影响模块电流。当辐射量减小一半,功率也降低一半。而额定电压却保持相对稳定(当大量模块串联时其影响也会累积增大CONTROL ENGINEERING China版权所有,电压会下降40V)。模块电压主要受温度变化的影响,在欧洲的STC条件下夏季的电压波动可达-8VCONTROL ENGINEERING China版权所有,冬季时可达10V,当有大量模块串联时能达到100V。高温时功率会比在标准测试条件下降低35%。这就是为什么模块安装时必须保证其有良好的通风而且制造商也试图让产品具有最好的导热性能。
热岛效应与旁通二极管
在有些操作条件下,有阴影的太阳能电池会发热以至破坏电池控制工程网版权所有,这就是所谓的热岛效应。当电池的某一部分被遮盖时就会发生这种情况,例如一片树叶落在太阳能电池模块上面时,被遮盖的电池显然就不产生电流,反而会成为一种负荷——使其它电池产生逆向电流。为了防止热岛效应扩大,就内置一个旁路-旁通二极管,将电流改道绕过这个被遮盖的电池。通常每18~20个电池设置一个旁通二极管。如果一个标准的太阳能电池模块有36~40个电池