摘要 无线接口协议主要用于在UTRA平台上建立、修正和释放无线承载业务。本文给出了UMTS无线接口协议结构,分析了物理层和链路层中的业务与功能、PDCP业务与功能、广播与组播控制业务与功能、网络层的Uu子层业务与功能、无线资源控制(RRC)功能。
1、协议结构
无线接口协议主要用于在UTRA平台上建立、修正和释放无线承载业务。这些协议在第1~3层包含有相关功能,使用OSI(开放系统互连)的术语www.cechina.cn,这3层分别是物理层(L1)、链路层(L2)和网络层(L3)。同时,链路层(L2)包含了如下子层:媒体接入控制(MAC)、无线链路控制(RLC)、包数据集中协议(PDCP)和广播与组播控制(BMC)。第3层(L3)和RLC子层是由控制平面(C平面)和用户平面(U平面)组成。PCDP和BMC只存在于用户平面中。
第3层在C平面中包含有子层。最低子层为无线资源控制(RRC),它与第2层通过接口相连,并终接于UTRAN。下一个子层提供复制避免功能,终接于CN。该子层是接入层的一部分,主要用于为高层提供接入层业务。但是,我们通常假定不属于非接入层,这些高层信
在体系结构示意图(见图1)中,每个模块都代表各自协议的实例。在子层之间的接口处,我们使用椭圆来表示业务接入点(SAP),SAP可用于进行对等通信。MAC层和物理层之间的SAP可提供传输信道,RLC子层和MAC层之间的SAP可提供逻辑信道。在C平面上,通用控制(GC)使用通知(Nt)SAP和专用控制(DC)SAP,来定义复制避免和较高L3子层(呼叫控制和移动性管理)之间的接口。
图1无线接口协议体系结构(椭圆表示业务接入点)
图1同时也给出了RRC与MAC之间以及RRC与L1之间的连接,这些连接可提供本地层间控制业务。同时,在RRC与RLC子层之间、RRC与PDCP子层之间以及RRC与BMC子层之间,我们使用相同的接口控制机制。这些接口支持RRC对低层配置进行控制。因此www.cechina.cn,在RRC和每个低层(PDCP,RLCwww.cechina.cn,MAC和L1)之间存在着已定义的分立控制SAP。
RLC子层与实用无线传输技术结合,能够提供ARQ(自动请求重传)功能。在这种情况下,我们无法将C平面和U平面中的RLC实例区分开来。当Iu连接点不发生变化时,CN可能会向UTRAN请求完全数据保护。但是,当Iu连接点发生变化时(如SRNS重新定位、改进等),UTRAN可能无法保证完全数据保护,这最终取决于CN中的复制避免功能实体。
2、业务与功能
2.1物理层中的业务与功能
原则上,我们可以将物理层的传输信道分为两类:通用信道和专用信道(见表1)。第一类在涉及到某类UE时,具有UE的带内识别功能。第二类专用物理信道对UE进行识别,即FDD模式中的代码与频率,以及TDD模式下的代码、时隙和频率。
表1 传输信道小结
当每种传输信道(FAUSCH除外)具有固定或慢速变化速率时控制工程网版权所有,会获取一种相关的传输格式,或者当传输信道具有快速变化速率时,会获取一种相关的传输格式集。我们将传输信道定义为编码、交织、比特率的组合,并将其映射到物理信道上。我们将传输格式集定义为一组传输格式。在传输格式集环境中,具有可变速率的DCH包含一个传输格式集,即针对每种速率都对应一种传输格式,而固定速率DCH只具有单一的传输格式。
2.2链路层中的业务与功能
MAC层中的业务与功能特点:
(1)数据传输:无须分段,即可在对等MAC实体之间为MAC层SDU提供非确认传输。
(2)无线资源和MAC参数的重新分配:根据RRC请求,执行无线资源分配和MAC参数变化功能。此外,在TDD模式中,MAC能够以自治的方式进行资源分配。
(3)测量结果报告:报告本地测量结果,如流向RRC的数据流量和质量指示。
MAC层可在逻辑信道上提供数据传输业务。我们将逻辑信道分为两类:用于控制平面信息传送的控制信道和用于用户平面信息传送的流量信道(见表2)。表3给出了逻辑信道和传输信道之间的连接关系。
表2 逻辑信道汇总
表3 逻辑信道和传输信道之间的连接关系
图2和图3分别给出了从UE端和UTRAN端看控制工程网版权所有,FDD和TDD模式下传输信道与逻辑信道之间的映射关系。
图2从UE端看逻辑信道与传输信道之间的映射关系
图3从UTRAN端看逻辑信道与传输信道之间的映射关系
2.3PDCP业务与功能
包数据集中协议(PDCP)业务可在确认/非确认和透明RLC模式中,提供网络PDU的传输与接收功能。作为PDCP功能的一部分,首先它将来自于某种网