多电机伺服控制广泛应用于各种电力传动自动控制系统中,如配料、传动等生产过程。伺服系统中电机控制性能和多电机间协调控制的好坏直接影响生产过程的质量,如何高效管理、方便应用、实时控制是多电机伺服系统生产领域亟待解决的首要问题。因此,本文提出一种基于CAN总线技术的多轴运动控制数字交流伺服系统。
现场总线技术解决了传统总线插板I/O模块多,干扰严重、系统软件编写复杂、系统硬件兼容性差等问题。大大减轻了现场信号连接的繁琐与费用,提高了信号传输的精度与灵活性,给安装、调试和维护带来诸多方便,为现场用户带来巨大的经济效益,代表着自动化领域发展的一个重要方向.
CAN总线技术
随着工业现场控制和自动化技术的不断进步,传统的通信模式已不能满足现代工程需要。CAN(Controller Area Network)总线是80年代初德国Bosch公司为解决现代汽车中众
1,是一种多主总线
网络上任一个节点均可在任意时刻主动向网络上其它节点发送信息,多主站依据优先机制进行总线访问;
2,非破坏性基于优先权总线仲裁技术 3,具有多种传送数据功能 4,节点数目多 5控制工程网版权所有,可靠性高 6,故障自动判别 CAN总线系统由CAN网络节点、转发器节点和上位机构成。总线技术遵循现场总线协议,将分布在不同位置,用途各异的测量仪表、控制设备互联成网,并可接入Intranet和Internet网络。现场总线技术的关键标志是它能支持双向多变量、总线式全数字通讯。传统4~20mA模拟直流回路只能在一根两芯电缆中单向传输一个参数,随着系统结构的日益复杂和信息量的增加,4~20mA电流环传输成为制约信息传输的瓶颈,所以现场总线替代4~20mA模拟信号标准已成为控制系统发展的必然趋势。 基于CAN总线技术的多机伺服系统 CAN总线控制网络结构 基于CAN总线技术的多电机伺服控制系统网络结构如图1所示,系统由上位机、CAN总线、现场伺服单元节点组成。数控系统上位机通过CAN总线控制网络节点任一伺服单元www.cechina.cn,数字伺服与数控系统之间数据传输可分为实时性数据信息和非实时性数据信息两类。实时性数据指参与控制器实时位置、速度、转矩等控制指令和反馈信息,传输速度要求较高。非实时性数据主要是指控制器参数设置、功能设定、诊断功能、伺服状态与报警等信息,传输速度相对较低。 CAN接口适配器是上位机与伺服单元数据传输和控制的桥梁,伺服单元采集现场的数据通过总线传给上位机,实现实时监视和控制。 数字伺服系统网络硬件与软件设计 CAN总线接口硬件电路 数控系统上位机采用研华公司PCL-841卡实现CAN总线通
采用非破坏性基于优先权总线仲裁技术结构,大大节省总线冲突仲裁时间CONTROL ENGINEERING China版权所有,在重负荷下表现出良好性能;
具有点对点,一点对多点(成组)及全局广播传送数据功能;
直接通讯距离最远可达10km(传输速率为5kbps),最高通讯速率可达1Mbps(传输距离为40m);
数据链路层采用短帧结构,实时性高控制工程网版权所有,纠错效果好,每帧信息都有CRC校验及其它校验措施,数据出错率低,可靠性高;
发送期间若丢失仲裁或因出错而遭破坏的帧可自动重发,暂时错误和永久性故障节点判别及故障节点自动脱离CAN总线。